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Overview

Adjusting the Ensemble Weight

Ensembling on Multi-class Tasks

Visualizing GAN Outputs

Creating GAN-generated Image Variants

Properties of GAN Ensembling

• Perturb coarse or fine layers of StyleGAN2 (middle layers change identity)
• Coarse layers change shape, fine layers change coloring
• Style-mixing causes larger visual changes compared to isotropic or PCA perturbations

• Only using GAN views can decrease accuracy
• Softly weight between the dataset original and GAN views
• Weight selected based on validation data
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Limg(x, G(w)) + λLlatent(w, E(x))

Limitations of Ensembling with GANs

• Pretrained GAN creates “views” of 
an original input image

• Ensemble views for classification

• Balance original and GAN views, 
due to classifier sensitivity to GAN 
artifacts
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• Encode and optimize to find image latent code, inversion required be fast and accurate

• Perturb optimized latent code in StyleGAN2 W+ space
• Style-mixing: swaps a random latent code at specified generator layers
• Style-mixing is more robust compared to isotropic or PCA perturbation
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• Showing average over 40 CelebAHQ binary attributes
• Increasing GAN ensemble size improves classification but saturates
• GAN style-mixing and traditional image cropping perform similarly
• Combining traditional and GAN views offers additional improvement

• Finetuning the classifier on GAN outputs improves ensembling benefit
• Style-mixing perturbation at test time is best

• GAN reconstruction capability: must preserve discriminative attributes
• GAN inversion efficiency: optimization time and reconstruction tradeoff
• Classifier sensitive to GAN artifacts 
• Currently limited to simple tasks and small structured datasets 
• Similar techniques may yield greater benefits in the future as GANs improve
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